收藏本站   |   网站地图   |   联系我们   |   ENGLISH   |   中国科学院
当前位置:首页 > 人力资源
人才队伍
副研究员
姓    名:
乔庆鹞
性    别:
职    务:
 
职    称:
副研究员
通讯地址:
广州市天河区能源路2号
邮政编码:
510640
电子邮件:
qiaoqy@ms.giec.ac.cn

 简历:
 

乔庆鹞,2022年博士毕业于英国曼彻斯特大学,主要研究机器学习预测建筑能耗。2023年至2025于中国香港大学建筑学院担任博士后研究员,从事高密度城市建筑健康方面研究。2025年4月加入中国科学院广州能源研究所。长期从事建筑节能与建筑环境方面的研究,在建筑能耗预测,建筑环境健康方面取得一系列成果,近年来已发表SCI论文12篇,其中一作9篇。

 研究领域:
 

建筑节能技术、建筑环境、大数据分析、人工智能技术在工程领域应用

 社会任职:
 

 获奖及荣誉:
 

Rapid Assistance in Modelling the Pandemic-Outreach Innovation Awards


 代表论著:
 

Qiao et al. Architectural design and building-level infections during the early stage of COVID-19: A study of 2597 public housing buildings in Hong Kong. Building and Environment,Volume 276,15 May 2025,112853 https://doi.org/10.1016/j.buildenv.2025.112853

C Ren,Z Shi,H Tian,R Zhao,C Huang,Q Qiao,J Yao. Estimating of the Causal Effect of Land Use Mixed on Adult Asthma Prevalence in New York State,Sustainable Cities and Society,106125,https://doi.org/10.1016/j.scs.2025.106125

Qiao et al. Associating COVID-19 Prevalence and Built Environment Design: An Explainable Machine Learning Approach. Journal of Urban Management,https://doi.org/10.1016/j.jum.2024.10.009

C Ren,X Huang,Q Qiao,M White. Street-Level Built Environment on SARS-CoV-2 Transmission: A Study of Hong Kong. Heliyon,Volume 10,Issue 19,e38405

Cheung,C. C.,Lai,K. Y.,Zhang,R.,Schuldenfrei,E.,Qiao,Q.,Webster,C.,& Sarkar,C. (2024). Associations of residential greenness with behavioural,physical,and mental health: a Hong Kong study during the fifth wave of COVID-19 pandemic. Cities & Health,1–14. https://doi-org.eproxy.lib.hku.hk/10.1080/23748834.2024.2381960

Qiao et al. “Architectural design and epidemic prevalence: Insights from Hong Kong's fifth wave,” Build. Environ,Volume 256,May 2024,doi.org/10.1016/j.buildenv.2024.111516

Qiao et al. “An interpretable multi-stage forecasting framework for energy consumption and CO2 emissions for the transportation sector,” Energy,Volume 286,1 January 2024,129499,doi.org/10.1016/j.energy.2023.129499

Q Qiao,C Cheung,A Yunusa-Kaltungo,P Manu,R Cao,Z Yuan. An interactive agent-based modelling framework for assessing COVID-19 transmission risk on construction site Safety Science 168,106312

Q. Qiao and A. Yunusa-Kaltungo,“A hybrid agent-based machine learning method for human-centred energy consumption prediction,” Energy Build,vol. 283,p. 112797,Mar. 2023,doi: 10.1016/j.enbuild.2023.112797.

Qiao et al. Developing a machine learning based building energy consumption prediction approach using limited data: Boruta feature selection and empirical mode decomposition. Energy Reports Volume 9 December 2023,Pages 3643-3660,doi.org/10.1016/j.egyr.2023.02.046

Qiao et al. Feature selection strategy for machine learning methods in building energy consumption prediction. Energy Reports Volume 8,November 2022,Pages 13621-13654

Qiao et al. Towards developing a systematic knowledge trend for building energy consumption prediction. Journal of Building Engineering 35(April):101967

 承担科研项目情况:
 

Keeping the UK Building safely (2021.10-2022.07),UKRI,Health and Safety Executive (HSE),UK,参与

Rapid Assistance in Modelling the Pandemic (2022.04-2022.05),UKRI,University of Cambridge,UK,主持

Spatial Exposure Notification (2022.01-2025.01),Collaborative Research Fund,University Grants Committee,Hong Kong SAR,China,参与

An architectural science-driven case study of two Public Estates during the 5th wave of COVID-19 in Hong Kong (2025.01-2025.04),参与


版权所有 © 中国科学院广州能源研究所 备案号:粤ICP备11089167号-2
地址: 广州市天河区能源路2号  邮编:510640  电话:020-87057639(办公室) 87057637(科技处)
传真:020-87057677  E-mail:web@ms.giec.ac.cn

giec-sydw.png